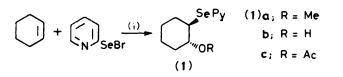
## Pyridylseleno Group in Organic Synthesis. Part 4.<sup>1</sup> Oxyseleniation of Olefins using Pyridine-2-selenenyl Bromide as a Selenium Reagent and its Utilization in the Synthesis of 2-Pyridyl Vinylic Selenides

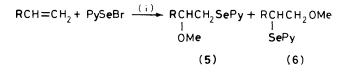
Akio Toshimitsu,\* Hiroto Owada, Keiji Terao, Sakae Uemura, and Masaya Okano Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

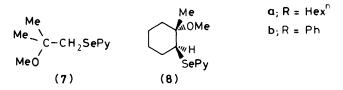
The reaction of olefins with pyridine-2-selenenyl bromide in methanol as solvent affords  $\beta$ -methoxyalkyl 2-pyridyl selenides (A) in good to excellent yields. This reaction also proceeds in acetic acid and aqueous tetrahydrofuran to give acetoxyseleniated and hydroxyseleniated products respectively. Oxidative elimination of (A) proceeds at room temperature, even in the case where the 2-pyridylseleno group is located at a terminal carbon, to afford methyl vinylic ethers in good yield. Treatment of (A) with lithium di-isopropylamide produces 2-pyridyl vinylic selenides (B). Deprotonation of (B) can be carried out under milder conditions than those of the corresponding phenyl vinylic selenides.


We have already reported that the 2-pyridylseleno group is a better leaving group than the phenylseleno group in selenoxide elimination reactions to form a carbon–carbon double bond in those cases where the products are terminal olefins<sup>1a</sup> and  $\alpha,\beta$ -unsaturated carbonyl compounds.<sup>1b,1c</sup> As a method for introduction of the 2-pyridylseleno group into organic molecules, nucleophilic substitution of alkyl halides by sodium pyridine-2-selenate and the reaction of pyridine-2-selenenyl halides with enols or enolate anion derivatives of carbonyl compounds have been utilized. Another method would be desirable and we succeeded in an electrophilic addition of pyridine-2-selenenyl bromide to olefins in methanol affording  $\beta$ -methoxyalkyl 2-pyridyl selenides in good to excellent yields.


Oxidative elimination of  $\beta$ -methoxyalkyl phenyl selenides has been reported to proceed at room temperature to afford allylic ethers selectively.<sup>2</sup> In the case where the phenylseleno group is situated on the terminal carbon, elimination reaction to afford vinylic alcohol derivatives is slow and drastic conditions (~100 °C) are required.<sup>3</sup> It was disclosed that even in such a case the oxidative elimination of the corresponding  $\beta$ -methoxyalkyl 2-pyridyl selenides proceeds smoothly at ambient temperature to produce methyl vinylic ethers.

Treatment of  $\beta$ -methoxyalkyl 2-pyridyl selenides with lithium di-isopropylamide (LDA) induced the elimination of methanol to produce 2-pyridyl vinylic selenides. A characteristic feature of the resulting selenides is that they possess a nitrogen atom which can work as a chelating site and also reduce the electron density of the double bond. Thus, the deprotonation of these vinylic selenides could be carried out by LDA, while a stronger base such as potassium di-isopropylamide (KDA) is necessary for the deprotonation of the corresponding phenyl vinylic selenides.<sup>4</sup> We describe here these further findings on the characteristics of the 2-pyridylseleno group.


## **Results and Discussion**


When cyclohexene was added to a suspension of pyridine-2selenenyl bromide in methanol at ambient temperature, the precipitate disappeared immediately to afford, after the mixture had been stirred for 2 h, *trans*-2-methoxycyclohexyl 2-pyridyl selenide (1a) almost quantitatively. The reactions were carried out at a concentration of 0.05M of the reactant, as the yields of (1a) were inferior at higher concentrations due to side-reactions. This reaction was also carried out in aqueous tetrahydrofuran (THF) (THF-water 5:1) and acetic acid as the solvent at ambient temperature to give (1b) (24 h; 41%) and (1c) (3 h; 65%) respectively. From cyclic olefins of other ring size (5, 7, and 8), compounds (2)—(4) were obtained in almost quantitative yields





Scheme 1. Reagent: (i) ROH





Scheme 2. Reagent: (i) MeOH

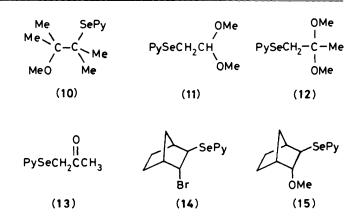
(Scheme 1). The regioselectivity of this oxyseleniation reaction was examined using oct-1-ene, styrene, 2-methylpropene, and 1-methylcyclohexene as substrates. In the case of oct-1-ene, a mixture of regioisomers, $\dagger$  (**5a**) and (**6a**), was formed in the ratio of 81:19, a Markovnikov adduct, (**5a**), predominating (Scheme 2).<sup>5-9</sup> This isomer ratio is similar to that observed in the oxyseleniation of oct-1-ene with PhSeCN-CuCl<sub>2</sub>-MeOH

<sup>&</sup>lt;sup>†</sup> Regioselectivity of oxyseleniation reaction (*i.e.*, the rate of isomerization and/or position of equilibrium) depends on the nature of the reagents. Typical examples using oct-1-ene or dec-1-ene as the substrate are as follows: > 99 : < 1 (PhSeBr-H<sub>2</sub>O-CF<sub>3</sub>CH<sub>2</sub>OH) (ref. 5); 73:27 (*N*-phenylselenophthalimide-H<sup>+</sup>-H<sub>2</sub>O-CH<sub>2</sub>Cl<sub>2</sub>) (ref. 6); a slight excess of a Markovnikov adduct (PhSeOCOCF<sub>3</sub>-Et<sub>2</sub>O) (ref. 7).

|       |                                  | Temp.        | Time | Product(s)              | Yield <sup>1</sup> |
|-------|----------------------------------|--------------|------|-------------------------|--------------------|
| Entry | Olefin                           | (°C)         | (h)  | (isomer ratio)          | (%)                |
| 1     | Cyclopentene                     | 20           | 2    | (2)                     | 88                 |
| 2     | Cyclopentene                     | -50 to $+20$ | 3    | (2)                     | 89                 |
| 3     | Cyclohexene                      | 20           | 2    | ( <b>1a</b> )           | 98                 |
| 4     | Cycloheptene                     | 20           | 2    | (3)                     | 89                 |
| 5     | Cyclo-octene                     | 20           | 2    | (4)                     | 93                 |
| 6     | Oct-1-ene                        | 20           | 2    | $(5a) + (6a) (81:19)^c$ | 67                 |
| 7     | Oct-1-ene                        | 20           | 24   | $(5a) + (6a) (81:19)^c$ | 70                 |
| 8     | Styrene                          | 20           | 2    | ( <b>5b</b> )           | 100                |
| 9     | 2-Methylpropene                  | 25           | 2    | (7)                     | 100                |
| 10    | 1-Methylcyclohexene              | 20           | 2    | (8)                     | 72                 |
| 11    | 1-Methylcyclohexene <sup>d</sup> | 20           | 2    | (8)                     | 93                 |
| 12    | trans-But-2-ene <sup>e</sup>     | -50 to $+20$ | 4    | erythro-( <b>9a</b> )   | 76                 |
| 13    | cis-But-2-ene <sup>e</sup>       | -50 to $+20$ | 4    | threo-( <b>9a</b> )     | 100                |
| 14    | trans-Oct-4-ene                  | 20           | 24   | erythro-(9b)            | 61                 |
| 15    | trans-Oct-4-ene                  | -50 to $+10$ | 5.5  | erythro-(9b)            | 59                 |
| 16    | trans-Oct-4-ene <sup>d</sup>     | -25 to $+25$ | 6    | erythro-(9b)            | 70                 |
| 17    | cis-Oct-4-ene                    | 20           | 2    | threo-( <b>9b</b> )     | 94                 |
| 18    | 2,3-Dimethylbut-2-ene            | -50 to $+20$ | 4    | (10)                    | 55                 |
| 19    | Vinyl acetate                    | -50 to $+20$ | 4    | (11)                    | 50                 |
| 20    | Vinyl acetate                    | 20           | 2    | (11)                    | 36                 |
| 21    | Isopropenyl acetate              | -50 to $+20$ | 4    | (12) + (13) (28:72)     | 100                |
| 22    | Norbornene                       | 20           | 3    | (14) + (15)(69:31)      | 74                 |
| 23    | Norbornene                       | 20           | 24   | (14) + (15)(75:25)      | 71                 |
| 24    | Norbornene <sup>7</sup>          | 20           | 3    | (14) + (15)(79:21)      | 63                 |

Table 1. Methoxyseleniation of various olefins<sup>a</sup>

<sup>a</sup> Carried out using olefin (4 mmol) and pyridine-2-selenenyl bromide (4 mmol) in methanol (80 ml). <sup>b</sup> Isolated yield by column chromatography. <sup>c</sup> Determined by g.l.c. analyses. <sup>d</sup> Carried out using olefin (1 mmol) and pyridine-2-selenenyl bromide (1 mmol) in methanol (40 ml). <sup>e</sup> Carried out in a pressure bottle using excess of butenes (ca. 12 mmol). <sup>f</sup> Pyridine-2-selenenyl bromide was stirred in methanol at ambient temperature for 24 h prior to the addition of norbornene.


$$R = Me$$

$$R$$

Scheme 3. Reagents: (i) PySeBr, MeOH

system at room temperature<sup>8</sup> or with PhSeSePh-Cu(OAc)<sub>2</sub>-(cat.)-O<sub>2</sub>-AcOH system at 100 °C.<sup>9</sup> In all other cases, a Markovnikov adduct, (**5b**), (**7**), and (**8**) was produced selectively. When this reaction was applied to *E*- and *Z*-but-2-ene and *E*- and *Z*-oct-4-ene, the addition reaction proceeded stereoselectively and -specifically to afford *erythro*-isomers from *E* olefins and *threo*-isomers from *Z* olefins (Scheme 3). The purity of the products was confirmed by g.l.c. analysis which could not detect the presence of their diastereoisomers (purity >97%). Although the 2-pyridylseleno group would stabilize a carbocationic species less effectively than the phenylseleno group, the regioselectivity and stereoselectivity described above indicate that this reaction proceeds through an episelenonium ion intermediate.

The reaction was also applied to electron-rich olefins such as tetrasubstituted olefins (2,3-dimethylbut-2-ene) and enol acetates (vinyl acetate and isopropenyl acetate) to afford compounds (10)—(13) in moderate to excellent yields. In these cases better results were obtained when the reactions were carried out at lower temperature (-50 to +20 °C). The oxyseleniated product of vinyl acetate was isolated in the form of the dimethyl acetal of 2-(2-pyridylseleno)acetaldehyde, (11), while a mixture of acetal (12) and ketone (13) was isolated under

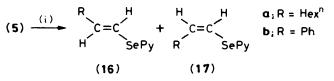


analogous conditions from isopropenyl acetate. The adduct of pyridine-2-selenenyl bromide to norbornene (14) was isolated as a major product accompanied by formation of the methoxyseleniated compound (15) (Table 1, entry 22). The ratio (14):(15) was not decreased by prolongation of the reaction time to 24 h (entry 23), indicating that methanolysis of (14) to afford (15) does not take place under the present reaction conditions. In almost all cases we have prepared pyridine-2selenenyl bromide by the reaction of 2,2'-dipyridyl diselenide and bromine in methanol as the solvent at ambient temperature for 2 h. The reaction of pyridine-2-selenenyl bromide with methanol to afford other selenium reagents such as methyl pyridine-2-selenenate (PySeOMe) is, however, unlikely because the ratio of (14): (15) was not decreased when the suspension of pyridine-2-selenenyl bromide in methanol was stirred for 24 h prior to the addition of norbornene (entry 24). These results suggest that the formation of the mixture of (14) and (15) is due to a competitive attack of bromide anion and methanol on an

Table 2. Preparation of 2-pyridyl vinylic selenides<sup>a</sup>

| Entry | Oxyseleniated compounds   | LiNPr <sub>2</sub> <sup>i</sup><br>(equiv.) | Temp.<br>(°C) | Time<br>(h) | Product(s)    | Yield <sup>b</sup><br>(%) | (Isomer<br>ratio) <sup>c</sup> |
|-------|---------------------------|---------------------------------------------|---------------|-------------|---------------|---------------------------|--------------------------------|
| 1     | (5a)                      | 2.5                                         | - 78          | 3           | (16a) + (17a) | 77                        | (39:61)                        |
| 2     | ( <b>5a</b> )             | 2.5                                         | 0             | 0.5         | (16a) + (17a) | 96                        | (40:60)                        |
| 3     | ( <b>5b</b> )             | 2.5                                         | -78           | 1           | (16b) + (17b) | 76                        | (70:30)                        |
| 4     | ( <b>5b</b> )             | 2.5                                         | - 78          | 3           | (16b) + (17b) | 99                        | (68:32)                        |
| 5     | (5b)                      | 1.5                                         | 0             | 1           | (16b) + (17b) | 66                        | (67:33)                        |
| 6     | erythro-(9b) <sup>d</sup> | 2.5                                         | -78 to $-65$  | 2           | (18)          | $16(74)^{e}$              |                                |
| 7     | threo-(9b) <sup>d</sup>   | 2.5                                         | -78 to $-65$  | 2           | (18) + (19)   | $21(43)^{e}$              | (29:71)                        |
| 8     | (4)                       | 1.5                                         | 0             | 0.5         | (20)          | 97                        |                                |

<sup>&</sup>lt;sup>*a*</sup> THF containing a small amount of hexane (*ca*. 0.64 ml per 1 mmol of LiNPr<sub>2</sub><sup>*i*</sup>) was used as solvent. Concentration of oxyseleniated compounds was *ca*. 0.15*m*. <sup>*b*</sup> Isolated yield by column chromatography. <sup>*c*</sup> Determined by g.l.c. and/or the integration of <sup>1</sup>H n.m.r. signals. <sup>*d*</sup> Carried out in the presence of HMPA (5 equiv.). <sup>*c*</sup> Recovered oxyseleniated compound (isolated by column chromatography).


(5b) 
$$\xrightarrow{(ii)}$$
 C=CH<sub>2</sub> 75% (71% in CH<sub>2</sub>Cl<sub>2</sub>)  
MeO

Scheme 4. Reagents: (i)  $H_2O_2$  (1.5 equiv.),  $CH_2Cl_2$ , -PySeOH; (ii)  $H_2O_2$  (1.5 equiv.), THF, -PySeOH

episelenonium ion intermediate. We could not detect the products of Wagner-Meerwein rearrangement which were observed in the addition of benzeneselenenyl chloride to norbornene in methanol as solvent.<sup>10</sup> In the cases of other olefins the adducts of pyridine-2-selenenyl bromide would be formed, but they seem to be converted smoothly into the methoxyseleniated compounds under the reaction conditions. The results are summarized in Table 1.

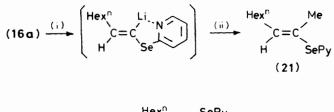
Oxidative elimination of  $\beta$ -methoxyalkyl 2-pyridyl selenides thus prepared were briefly examined using (1a) and (5b) as substrates. On oxidation of compound (1a) with 1.5 equiv. of hydrogen peroxide in dichloromethane as solvent, the elimination 'away from' (attack meta to) the methoxy group proceeded to afford 3-methoxycyclohexene in 92% yield (Scheme 4). Its regioisomer, 1-methoxycyclohexene, was not detected by g.l.c. analysis (< 3%). When elimination 'away from' the methoxy group is not possible, as in the case of (5b), elimination of the hydrogen atom geminal to the methoxy group occurred to give a-methoxystyrene. The characteristic feature of this reaction is that the elimination proceeded smoothly at ambient temperature using only 1.5 equiv. of H<sub>2</sub>O<sub>2</sub>.<sup>1a\*</sup> Elimination of the phenylseleninyl group with the hydrogen atom geminal to the alkoxy group required heat (100 °C).<sup>3</sup> Even in the oxidative elimination of analogous onitrophenyl selenides,<sup>11</sup> a large excess (5 equiv.) of H<sub>2</sub>O<sub>2</sub> was used in refluxing dichloromethane. This difference clearly indicates that the 2-pyridylseleno group is a better leaving group than others investigated.

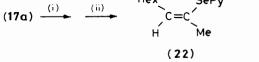
Treatment of compounds (5) with LDA at -78 to 0 °C in THF as the solvent induced an elimination of methanol to afford 2-pyridyl vinylic selenides, (16) and (17), in good to excellent yields (Scheme 5).<sup>12</sup> The formation of Z-isomer (17a) was favoured in the case of (5a), while E-isomer (16b) was the



Scheme 5. Reagents: (i) LiNPr<sub>2</sub><sup>i</sup>, THF

erythro-(9b) 
$$\xrightarrow{(i)}$$
  $Pr^n Pr^n$  (18) 16% H SePy


three-(9b) 
$$\xrightarrow{(i)}$$
  $Pr^n$  SePy  
 $C=C$  + (18)  
H  $Pr^n$  6%


(19) 15%

Scheme 6. Reagents: (i) LDA (2.5 equiv.), HMPA (5 equiv.), THF; (ii) LDA (1.5 equiv.), THF

predominant product from (5b). The elimination of methanol from (5a) requires 0.5 h at 0 °C for completion (entry 2, Table 2) and is slower than the case of (5b) which affords the conjugated olefin and reached completion at -78 °C within 3 h (entry 4, Table 2) (See also entry 1 in Table 2). The use of 2.5 equiv. of LDA seems inevitable in this case as the methanol elimination from (5b) was not complete when using 1.5 equiv. of LDA at 0 °C for 1 h (entry 5, Table 2). When the reaction was applied to β-methoxy-selenides obtained from 1,2-disubstituted olefins such as erythro- and threo-(9b), it did not proceed under the conditions described above. However, in the presence of hexamethylphosphoric triamide (HMPA) (5 equiv.) the reaction of erythro-(9b) with 2.5 equiv. of LDA at -78 to -65 °C afforded the E-vinyl selenide (18) in an isolated yield of 16%, 74% of erythro-(9b) being recovered. Although the yield of (18) was unsatisfactory at this temperature, an unworkable mixture of products was obtained at higher temperature. Under similar conditions, threo-(9b) afforded a mixture of Z and E olefins, (19) and (18), in 15 and 6% yield respectively, 43% of threo-(9b) being recovered (Scheme 6). The identification of the E and Zolefins is based on the observation that in the <sup>1</sup>H n.m.r. spectra a

<sup>\*</sup> In a selenoxide elimination of alkyl phenyl selenides 5—10 equiv. of  $H_2O_2$  are normally used.





Scheme 7. Reagents: (i) LiNPr2i, THF; (ii) MeI

vinylic proton syn to the heteroatom (E-isomer) showed an absorption peak at lower magnetic field ( $\delta$  6.22) than that anti to the heteroatom (Z-isomer;  $\delta$  6.02). The selective formation of the E-product (18) from erythro-(9b) is a result of anti elimination of the methoxy group and the hydrogen atom. Thus, the trans addition of the 2-pyridylseleno and methoxy groups followed by anti elimination of the hydrogen atom and the methoxy group induced the inversion of the carbon framework of the double bond  $(E \longrightarrow Z)$ . The formation of a mixture of stereoisomers from threo-(9b) is attributed to the presence of a non-stereoselective course of elimination such as an Elcb mechanism.\* This seems to be due to a higher energy barrier of E2 elimination from threo-(9b) to give (19) than that from erythro-(9b) to give (18), although we have not yet clarified the reason why. The methanol elimination from (4) proceeded smoothly on treatment with 1.5 equiv. of LDA at 0 °C for 0.5 h to afford compound (20) almost quantitatively. The vinylic proton of compound (20) appeared at  $\delta$  6.36 in the <sup>1</sup>H n.m.r. spectrum, indicating that this proton is situated syn to the 2-pyridylseleno group (vide supra) and that the stereochemistry of the lone double bond in (20) is Z. This is the result of syn elimination of the hydrogen atom and the methoxy group, again due to non-concerted elimination.

Deprotonation of vinylic selenides to produce  $\alpha$ -lithiated derivatives is a synthetically valuable reaction. It has been reported that non-substituted vinyl phenyl selenide is de-protonated with LDA in THF as solvent.<sup>13-15</sup> When an alkyl substituent is introduced into the  $\beta$  position of the vinyl group, however, deprotonation requires more vigorous conditions such as the use of a more active base, e.g. KDA,<sup>4</sup> or the use of more reactive vinylic selenides such as m-(trifluoromethyl)phenyl vinyl selenide.<sup>13</sup> We found that oct-1-enyl 2-pyridyl selenides, (16a) and (17a), are deprotonated quite easily by the reaction with LDA in THF as the solvent at -78 °C and the resulting a-lithiated derivatives react with methyl iodide to afford the methylated products, (21) and (22), in 100 and 94% yield respectively (Scheme 7). It should be noted that the deprotonation and alkylation shown in Scheme 7 proceeded with retention of configuration. The same sequence using alk-1enyl m-(trifluoromethyl)phenyl selenides has been reported to give a mixture of stereoisomers.<sup>13,†</sup> The ready deprotonation and stereoselective alkylation of 2-pyridyl vinylic selenides described above seems to be due to the presence of a nitrogen atom which would reduce the electron density of the double bond and also chelate with a lithium atom as depicted in Scheme 7.1

## Experimental

I.r. spectra were recorded with Hitachi EPI-S2 and JASCO IR-810 spectrophotometers. <sup>1</sup>H N.m.r. spectra were obtained with JEOLCO JNM-PFT-100 and Varian EM-360 instruments on solutions in CDCl<sub>3</sub> with Me<sub>4</sub>Si as internal standard. G.l.c. analyses were carried out with a Shimadzu 4BMPF apparatus with EGSS-X (15%)-Chromosorb W (1, 2, and 3 m) and PEG-6000 (25%)-Shimalite (3 m) columns (N<sub>2</sub> as carrier gas).

2,2'-Dipyridyl diselenide and pyridine-2-selenenyl bromide were prepared by the reported methods.<sup>1c</sup> Authentic samples of 3-methoxycyclohexene<sup>2</sup> and  $\alpha$ -methoxystyrene<sup>16</sup> were also prepared by the reported methods. THF was dried over benzophenone ketyl and was distilled just before use. All other organic and inorganic materials were commercial products and were used without purification.

N.m.r. spectral as well as combustion analytical data of new compounds are summarized in Table 3. I.r. spectral data of representative compounds are described here in the Experimental section and are not included in the Table.

Preparation of trans-2-Methoxycyclohexyl 2-Pyridyl Selenide (1a). General Procedure.—To a solution of 2,2'-dipyridyl diselenide (0.63 g, 2.0 mmol) in methanol (72 ml) was added a solution of bromine (0.32 g, 2.0 mmol) in methanol (4 ml) and the resulting yellow suspension was stirred at ambient temperature for 2 h. By the addition of cyclohexene (0.33 g, 4.0 mmol) in methanol (4 ml) the precipitate disappeared immediately to give a pale yellow solution which was stirred at ambient temperature for 2 h. The solution was added to saturated aqueous sodium hydrogen carbonate (100 ml) and the products were extracted with chloroform (30 ml  $\times$  3). The organic layer was washed with water, dried (MgSO<sub>4</sub>), and evaporated to leave a yellow oil. Column chromatography on silica gel (Wakogel C-200) with hexane-ethyl acetate (5:1) as eluant yielded compound (1a) (1.06 g, 98%); v<sub>max</sub> (film) 1 571, 1 088, 751, and 698 cm<sup>-1</sup>.

Oxidative Elimination of Selenide (5b).—To a solution of compound (5b) (0.15 g, 0.5 mmol) in THF (4 ml) was added 30% aqueous  $H_2O_2$  (85 mg, 0.75 mmol) in THF (1 ml) and the resulting solution was stirred at ambient temperature for 2 h. After work-up as described above, g.l.c. analysis of the organic layer using *p*-methylanisole as internal standard showed the presence of  $\alpha$ -methoxystyrene (0.38 mmol, 75%).

Preparation of E- and Z-Oct-1-enyl 2-Pyridyl Selenides (16a) and (17a).—To a solution of LDA (12.5 mmol) in THF and hexane (24 + 8 ml) was added a solution of compound (5a) (1.5 g, 5 mmol) in THF (8 ml) at -78 °C by a syringe and the resulting solution was stirred at 0 °C under nitrogen for 0.5 h. The colour of the solution turned from pale yellow to dark red during this period and then the reaction was quenched by the addition of methanol (2 ml). After being added to saturated aqueous NH<sub>4</sub>Cl (20 ml), the products were extracted with dichloromethane (30 ml × 5). The organic layer was washed with brine (10 ml), dried (MgSO<sub>4</sub>), and analysed by g.l.c. to

<sup>\*</sup> We have confirmed separately that Z-selenide (19) does not isomerize to the E-isomer (18) under the reaction conditions.

<sup>&</sup>lt;sup>†</sup> Deprotonation and alkylation of alk-1-enyl phenyl selenides using KDA as the base have been reported to proceed with retention of configuration (ref. 4).

<sup>‡</sup> Although such chelation was suggested to be prevented by the presence of di-isopropylamine (H. J. Reich, J. Org. Chem., 1975, 40, 2570), we feel it quite attractive to attribute the different results between m-(trifluoromethyl)phenylseleno and 2-pyridylseleno cases to the chelation. We are grateful to one of the referees for a valuable comment.

Table 3. Spectral and analytical data of new compounds

| Compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Found (%)/(required) |             |                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------|---------------------|
| (formula) Chemical shift <sup>a</sup> δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | С                    | н           | N                   |
| (1a) 1.2-2.4 (8 H, m), 3.34 (3 H, s), 3.2-3.5 (1 H, m), 4.00 (1 H, dt, J 4 and 7.5 Hz), 6.96 (1 H, ddd, J 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53.6                 | 6.4         | 5.3                 |
| $C_{12}H_{17}NOSe = 5$ , and 6 Hz), 7.3–7.4 (2 H, m), 8.39 (1 H, ddd, J 1, 2, and 5 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (53.3                | 6.3         | 5.2)                |
| (1b) $0.8-1.9$ (6 H, m), $1.9-2.7$ (2 H, m), $3.1-4.0$ (2 H, m), $5.31$ (1 H, br s), $6.8-7.2$ (1 H, m),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.6                 | 5.8         | 5.3                 |
| C <sub>11</sub> H <sub>15</sub> NOSe 7.2—7.6 (2 H, m), 8.2—8.5 (1 H, m)<br>(1c) 1.2—2.6 (8 H, m), 1.87 (3 H, s), 3.95 (1 H, dt, J 4 and 9 Hz), 4.8—5.2 (1 H, m), 6.9—7.2 (1 H, m),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (51.6<br>52.5        | 5.9<br>5.8  | 5.5)<br>4.6         |
| $C_{13}H_{17}NO_2Se = 7.2-7.7 (2 H, m), 8.4-8.6 (1 H, m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (52.35               | 5.75        | 4.7)                |
| (2) 1.4-2.6 (6 H, m), 3.33 (3 H, s), 3.7-4.0 (1 H, m), 4.0-4.3 (1 H, m), 6.8-7.2 (1 H, m), 7.2-7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51.7                 | 6.0         | 5.6                 |
| $C_{11}H_{15}NOSe$ (2 H, m), 8.4–8.5 (1 H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (51.6                | 5.9         | 5.5)                |
| (3) $1.3-2.2 (10 \text{ H}, \text{m}), 3.49 (3 \text{ H}, \text{s}), 3.3-3.6 (1 \text{ H}, \text{m}), 4.13 (1 \text{ H}, \text{dt}, J 4 \text{ and } 7 \text{ Hz}), 6.7-7.1 (1 \text{ H}, \text{m}), 0.05 \text{ Hz} = 7.1 - 7.5 (2 \text{ Hz}) + 8.2 - 8.5 (1 \text{ Hz}) = 100 \text{ Hz}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 55.0                 | 6.9         | 5.05                |
| C <sub>13</sub> H <sub>19</sub> NOSe 7.1–7.5 (2 H, m), 8.2–8.5 (1 H, m)<br>(4) 1.1–2.4 (12 H, m), 3.29 (3 H, s), 3.2–3.7 (1 H, m), 4.09 (1 H, dt, J 3 and 6.5 Hz), 6.8–7.2 (1 H, m),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (54.9<br>56.6        | 6.7<br>7.15 | 4.9)<br>4.7         |
| $C_{14}H_{21}NOSe = 7.2-7.5 (2 H, m), 8.3-8.5 (1 H, m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (56.4                | 7.1         | 4.7)                |
| (5a) 0.7-1.0 (3 H, m), 1.0-1.8 (10 H, m), 3.35 (3 H, s), 3.2-3.6 (3 H, m), 6.8-7.1 (1 H, m), 7.1-7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>`</b> 55.7        | 7.95        | 4.85                |
| $C_{14}H_{23}NOSe$ (2 H, m), 8.2–8.5 (1 H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (56.0                | 7.7         | 4.7)                |
| $(6a)^{b}$ [+ (5a)] 3.30 (3 H, s), other signals overlapped with those of (5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56.2                 | 7.6         | 4.7                 |
| C <sub>14</sub> H <sub>23</sub> NOSe<br>( <b>5b</b> ) 3.07 (3 H, s), 3.26 (1 H, d, J 8 Hz), 3.29 (1 H, d, J 5 Hz), 4.21 (1 H, dd, J 5 and 8 Hz), 6.5–6.8 (1 H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (56.0<br>57.8        | 7.7<br>5.2  | 4.7)<br>4.9         |
| $C_{14}H_{15}NOSe$ m), 6.8–7.2 (7 H, m), 7.9–8.1 (1 H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (57.5                | 5.2         | 4.8)                |
| (7) 1.30 (6 H, s), 3.19 (3 H, s), 3.44 (2 H, s), 6.8–7.2 (1 H, m), 7.2–7.5 (2 H, m), 8.3–8.5 (1 H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49.5                 | 6.3         | 5.95                |
| C <sub>10</sub> H <sub>15</sub> NOSe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (49.2                | 6.2         | 5.7)                |
| (8) 1.28 (3 H, s), 1.4–2.0 (8 H, m), 3.24 (3 H, s), 4.27 (1 H, dd, J 4 and 7.5 Hz), 6.8–7.1 (1 H, m), $C_{13}H_{19}NOSe = 7.2-7.5$ (2 H, m), 8.3–8.5 (1 H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55.05<br>(54.9       | 6.7<br>6.7  | 5.0<br>4.9)         |
| threo-(9a) 1.24 (3 H, d, J 6 Hz), 1.51 (3 H, d, J 7 Hz), 3.34 (3 H, s), 3.52 (1 H, dq, J 3.2 and 6 Hz), 4.16 (1 H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 49.0                 | 6.3         | 4. <i>3)</i><br>5.7 |
| $C_{10}H_{15}NOSe$ dq, J 3.2 and 7 Hz), 6.7–7.0 (1 H, m), 7.0–7.5 (2 H, m), 8.2–8.4 (1 H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (49.2                | 6.2         | 5.7)                |
| erythro-(9a) 1.23 (3 H, d, J 6 Hz), 1.53 (3 H, d, J 7 Hz), 3.34 (3 H, s), 3.61 (1 H, dq, J 3.5 and 6 Hz), 4.13 (1 H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49.3                 | 6.4         | 5.6                 |
| $C_{10}H_{15}NOSe  dq, J 3.5 and 7 Hz), 6.8-7.1 (1 H, m), 7.1-7.5 (2 H, m), 8.3-8.5 (1 H, m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (49.2                | 6.2         | 5.7)                |
| <i>threo-</i> (9b) 0.7—1.1 (6 H, m), 1.1—2.0 (8 H, m), 3.31 (3 H, s), 3.1—3.4 (1 H, m), 4.0—4.3 (1 H, m), 6.8—7.1 $C_{14}H_{23}NOSe$ (1 H, m), 7.2—7.4 (2 H, m), 8.2—8.4 (1 H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56.0<br>(56.0        | 7.6<br>7.7  | 4.85<br>4.7)        |
| $c_{14}n_{23}$ (VOSC (1 H, m), 7.2–7.4 (2 H, m), 8.2–8.4 (1 H, m)<br>ervthro-(9b) 0.7–1.1 (6 H, m), 1.2–1.9 (8 H, m), 3.28 (3 H, s), 3.1–3.5 (1 H, m), 4.0–4.3 (1 H, m), 6.7–7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56.0                 | 7.6         | 4.75                |
| $C_{14}H_{23}NOSe = (1 H, m), 7.2-7.4 (2 H, m), 8.2-8.4 (1 H, m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (56.0                | 7.7         | 4.7)                |
| (10) 1.30 (6 H, s), 1.53 (6 H, s), 3.20 (3 H, s), 7.0–7.4 (1 H, m), 7.4–7.7 (2 H, m), 8.4–8.6 (1 H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.8                 | 6.9         | 5.3                 |
| $C_{12}H_{19}NOSe$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (52.9                | 7.0         | 5.1)                |
| (11) $3.36 (6 \text{ H}, \text{ s}), 3.3 - 3.5 (2 \text{ H}, \text{ m}), 4.61 (1 \text{ H}, \text{ t}, J 6 \text{ Hz}), 6.9 - 7.2 (1 \text{ H}, \text{ m}), 7.2 - 7.5 (2 \text{ H}, \text{ m}), 8.3 - 8.5 (1 \text{ H}, \text{ m})$<br>C <sub>9</sub> H <sub>13</sub> NO <sub>2</sub> Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.1<br>(43.9        | 5.3<br>5.3  | 5.7<br>5.7)         |
| $(12)^{c}$ 1.42 (3 H, s), 3.21 (6 H, s), 3.53 (2 H, s), 6.8–7.3 (1 H, m), 7.3–7.5 (2 H, m), 8.3–8.5 (1 H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45.8                 | 5.7         | 5.2                 |
| $C_{10}H_{15}NO_2Se$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (46.2                | 5.8         | 5.4)                |
| $(13)^c$ 2.28 (3 H, s), 3.96 (2 H, s), 6.8–7.1 (1 H, m), 7.1–7.6 (2 H, m), 8.3–8.5 (1 H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.7                 | 4.25        | 6.6                 |
| $C_{8}H_{9}NOSe$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (44.9                | 4.2         | 6.5)                |
| (14) 0.8—2.2 (6 H, m), 2.2—2.7 (2 H, m), 3.74 (1 H, dd, J 3 and 4 Hz), 4.28 (1 H, br t, J 4 Hz), 6.9—7.2 $C_{12}H_{14}BrNSe$ (1 H, m), 7.2—7.7 (2 H, m), 8.3—8.6 (1 H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43.85<br>(43.5       | 4.4<br>4.3  | 4.3<br>4.2)         |
| (15) $0.7-2.2$ (6 H, m), $2.2-2.7$ (2 H, m), $3.31$ (3 H, s), $3.2-3.5$ (1 H, m), $3.6-4.0$ (1 H, m), $6.8-7.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.9                 | 6.1         | 5.0                 |
| $C_{13}H_{17}NOSe$ (1 H, m), 7.2–7.7 (2 H, m), 8.3–8.5 (1 H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (55.3                | 6.1         | 5.0)                |
| (16a) <sup>d</sup> 0.7-1.0 (3 H, m), 1.0-1.6 (8 H, m), 2.29 (2 H, br q, J 6.6 Hz), 6.24 (1 H, dt, J 15.4 and 6.6 Hz), 6.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 58.3                 | 7.4         | 5.2                 |
| $C_{13}H_{19}NSe$ (1 H, dt, J 15.4 and 1.1 Hz), 7.03 (1 H, ddd, J 7.1, 4.9, and 1.7 Hz), 7.30 (1 H, ddd, J 7.8, 1.7, and 1.0 Hz) 7.47 (1 H, ddd, L78, 7.1, and 2.0 Hz) 8.44 (1 H, ddd, L40, 2.0, and 1.0 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (58.2                | 7.1         | 5.2)                |
| (17a) <sup>4</sup> 1.0 Hz), 7.47 (1 H, ddd, J 7.8, 7.1, and 2.0 Hz), 8.44 (1 H, ddd, J 4.9, 2.0, and 1.0 Hz)<br>0.7-1.0 (3 H, m), 1.0-1.6 (8 H, m), 2.19 (2 H, br q, J 7 Hz), 6.15 (1 H, dt, J 9.0 and 7.1 Hz), 6.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58.3                 | 7.4         | 5.0                 |
| $C_{13}H_{19}NSe$ (1 H, dt, J 9.0 and 1.2 Hz), 7.04 (1 H, ddd, J 6.9, 4.8, and 1.7 Hz), 7.33 (1 H, ddd, J 7.9, 1.7, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (58.2                | 7.1         | 5.2)                |
| 1.0 Hz), 7.47 (1 H, ddd, J 7.9, 6.9, and 1.8 Hz), 8.46 (1 H, ddd, J 4.8, 1.8, and 1.0 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |             |                     |
| (16b) <sup>d</sup> 7.04 (1 H, d, J 15.9 Hz), 7.07 (1 H, ddd, J 6.8, 4.9, and 1.7 Hz), 7.2–7.6 (7 H, m), 7.57 (1 H, d, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 60.0                 | 4.2         | 5.6                 |
| C <sub>13</sub> H <sub>11</sub> NSe 15.9 Hz) 8.49 (1 H, ddd, J 4.9, 2.0, and 1.0 Hz)<br>(17b) 7.08 (1 H, ddd, J 6.7, 4.9, and 1.8 Hz), 7.11 (1 H, d, J 10.5 Hz), 7.2–7.6 (7 H, m), 7.52 (1 H, d, J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (60.0<br>60.3        | 4.3<br>4.2  | 5.4)<br>5.4         |
| (17b) 7.08 (1 H, ddd, J 6.7, 4.9, and 1.8 Hz), 7.11 (1 H, d, J 10.5 Hz), 7.2–7.6 (7 H, m), 7.52 (1 H, d, J $C_{13}H_{11}NSe$ 10.5 Hz), 8.52 (1 H, ddd, J 4.9, 2.0, and 1.0 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (60.0                | 4.3         | 5.4)                |
| $\begin{array}{c} \textbf{(18)}^{d} \\ \textbf{(18)}^{d} \\ \textbf{(17)}^{d} \\ \textbf{(18)}^{d} \\ \textbf{(17)}^{d} \\ \textbf{(18)}^{d} \\ \textbf{(17)}^{d} \\ \textbf{(17)}^{$ | 58.3                 | 7.2         | 5.05                |
| $C_{13}H_{19}NSe = 7.1-7.6 (2 H, m), 8.3-8.5 (1 H, m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (58.2                | 7.1         | 5.2)                |
| $(19)^d$ 0.7-1.1 (6 H, m), 1.2-1.8 (4 H, m), 2.1-2.5 (4 H, m), 6.02 (1 H, t, J 6.8 Hz), 6.9-7.1 (1 H, m), 7.1-7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | 7.1         | 5.25                |
| C <sub>13</sub> H <sub>19</sub> NSe (2 H, m), 8.3–8.5 (1 H, m)<br>(20) <sup>d</sup> (2 H, m), 8.3–8.5 (1 H, m)<br>1.54 (8 H, br s), 2.1–2.4 (2 H, m), 2.5–2.7 (2 H, m), 6.36 (1 H, t, J 8.3 Hz), 7.03 (1 H, ddd, J 6.8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (58.2<br>58.35       | 7.1<br>6.5  | 5.2)<br>5.4         |
| $C_{13}H_{17}NSe$ 4.9, and 1.7 Hz), 7.35 (1 H, ddd, J 7.9, 1.7, and 1.0 Hz), 7.48 (1 H, ddd, J 7.9, 6.8, and 2.0 Hz), 8.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (58.65               | 6.4         | 5.3)                |
| (1 H, ddd, J 4.9, 2.0, and 1.0 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |             |                     |
| (21) 0.7—1.0 (3 H, m), 1.1—1.6 (8 H, m), 1.9—2.3 (5 H, m), 6.15 (1 H, tq, J 6 and 1.5 Hz), 6.9—7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60.0<br>(59.6        | 7.6<br>7.5  | 5.3                 |
| C <sub>14</sub> $\dot{H}_{21}$ NSe (1 H, m), 7.2–7.6 (2 H, m), 8.3–8.5 (1 H, m)<br>(22) 0.7–1.0 (3 H, m), 1.1–1.6 (8 H, m), 2.1–2.7 (5 H, m), 5.94 (1 H, tq, J 7 and 1.5 Hz), 6.9–7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (59.6<br>59.2        | 7.5<br>7.9  | 5.0)<br>4.8         |
| (22) 0.7–1.0 (3 H, m), 1.1–1.6 (8 H, m), 2.1–2.7 (5 H, m), 5.94 (1 H, tq, $J$ / and 1.5 Hz), 6.9–7.1<br>$C_{14}H_{21}NSe$ (1 H, m), 7.2–7.5 (2 H, m), 8.3–8.5 (1 H, m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (59.6                | 7.5         | 5.0)                |
| <sup>a</sup> 60 MHz N.m.r. unless otherwise stated. <sup>b</sup> Identified as a mixture with ( <b>5a</b> ). <sup>c</sup> These compounds were isolated from the aque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ous lave             | r result    | ing from            |

<sup>a</sup> 60 MHz N.m.r. unless otherwise stated. <sup>b</sup> Identified as a mixture with (5a). <sup>c</sup> These compounds were isolated from the aqueous layer resulting from the work-up procedure. <sup>d</sup> 100 MHz N.m.r.

show that the isomer ratio (16a): (17a) was 40:60. After removal of the solvent, column chromatography [silica gel (200 mesh); hexane-ethyl acetate (20:1) as eluant] of the residual oil afforded a mixture of (16a) + (17a) (1.31 g, 4.8 mmol, 96%). Separation of (16a) and (17a) was carried out by column chromatography under medium pressure (2—5 kg cm<sup>-2</sup>) [silica gel (230—400 mesh); hexane-ethyl acetate (40:1) as eluant] to afford pure isomer (17a) (0.43 g, 1.6 mmol), a mixture of (16a) and (17a) (0.60 g, 2.2 mmol), and pure (16a) (0.19 g, 0.7 mmol). *E*-Isomer (16a);  $v_{max}$  (film) 3 060, 2 940, 2 870, 1 572, 1 557sh, 1 450, 1 411, 1 111, 950, 752, and 698 cm<sup>-1</sup> Z-isomer (17a);  $v_{max}$ . (film) 3 070, 2 940, 2 880, 1 572, 1 559sh, 1 451, 1 411, 1 111, 752, and 700 cm<sup>-1</sup>.

Deprotonation and Methylation of Selenides (16a) and (17a).-To a solution of LDA (1 mmol) in THF and hexane (4 + 0.7 ml)was added a solution of compound (16a) (0.19 g, 0.7 mmol) in THF (1 ml) at -78 °C under nitrogen. After 0.5 h, methyl iodide (1 mmol) was added and the temperature of the solution was allowed to rise from -78 °C to 10 °C during 5 h. The reaction was quenched by the addition of saturated aqueous NH<sub>4</sub>Cl (10 ml) and the products were extracted with dichloromethane (20 ml  $\times$  5). The organic layer was washed with brine (10 ml), dried (MgSO<sub>4</sub>), and evaporated under reduced pressure. Column chromatography [silica gel (200 mesh); hexane-ethyl acetate (20:1) as eluant] of the residual oil afforded pure methylation product (21) (0.20 g, 0.7 mmol, 100%); v<sub>max</sub> (film) 3 030, 2 945, 2 920, 2 850, 1 570, 1 550, 1 445, 1 410, 1 105, 745, and 695 cm<sup>-1</sup>. The same procedure using compound (17a) (0.43 g, 1.6 mmol) as starting material afforded the Z-product (22) (0.424 g, 1.5 mmol, 94%);  $v_{max}$  (film) 3 030, 2 950, 2 920, 2 850, 1 570, 1 555, 1 445, 1 415, 1 110, 750, and 695 cm<sup>-1</sup>.

## References

- (a) Part 1, A. Toshimitsu, H. Owada, S. Uemura, and M. Okano, *Tetrahedron Lett.*, 1980, **21**, 5037; (b) Part 2, *ibid.*, 1982, **23**, 2105; (c) Part 3, A. Toshimitsu, H. Owada, K. Terao, S. Uemura, and M. Okano, J. Org. Chem., 1984, **49**, 3796.
- 2 K. B. Sharpless and R. F. Lauer, J. Org. Chem., 1974, 39, 429.
- 3 N. Zylber and J. Zylber, J. Chem. Soc., Chem. Commun., 1978, 1084. See also M. Petrzilka, *Helv. Chim. Acta*, 1978, **61**, 2286, 3075; R. Pitteloud and M. Petrzilka, *ibid.*, 1979, **62**, 1319.
- 4 S. Raucher and G. A. Koolpe, J. Org. Chem., 1978, 43, 3794.
- 5 J. N. Denis, J. Vicens, and A. Krief, Tetrahedron Lett., 1979, 2697.
- 6 K. C. Nicolaou, D. A. Claremon, W. E. Barnette, and S. P. Seitz, J. Am. Chem. Soc., 1979, 101, 3704.
- 7 D. L. J. Clive, J. Chem. Soc., Chem. Commun., 1974, 100.
- 8 A. Toshimitsu, T. Aoai, S. Uemura, and M. Okano, J. Org. Chem., 1980, 45, 1953.
- 9 N. Miyoshi, Y. Ohno, K. Kondo, S. Murai, and N. Sonoda, Chem. Lett., 1979, 1309.
- 10 D. G. Garratt and A. Kabo, Can. J. Chem., 1980, 58, 1030.
- K. Furuichi, S. Yogai, and T. Miwa, J. Chem. Soc., Chem. Commun., 1980, 66.
   Phenyl vinylic selenides have many precedents: for a review see J. V.
- Comasseto, J. Organomet. Chem., 1983, 253, 131.
- 13 H. J. Reich, W. W. Willis, Jr., and P. D. Clark, J. Org. Chem., 1981, 46, 2775.
- 14 M. Sevrin, J. N. Denis, and A. Krief, Angew. Chem., Int. Ed. Engl., 1978, 17, 526.
- 15 H. J. Reich and W. W. Willis, Jr., J. Org. Chem., 1980, 45, 5227.
- 16 D. B. Killian, G. F. Hennion, and J. A. Nieuwland, J. Am. Chem. Soc., 1935, 57, 544.

Received 8th June 1984; Paper 4/952